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Abstract

The main intention of this paper is to investigate, with new daily data, whether prices in
the two Chinese stock exchanges (Shanghai and Shenzhen) follow a random-walk process as
required by market efficiency. We use two different approaches, the standard variance-ratio test
of Lo and MacKinlay (1988) and a model-comparison test that compares the ex post forecasts
from a NAÏVE model with those obtained from several alternative models (ARIMA, GARCH and
Artificial Neural Network-ANN). To evaluate ex post forecasts, we utilize several procedures
including RMSE, MAE, Theil’s U, and encompassing tests. In contrast to the variance-ratio test,
results from the model-comparison approach are quite decisive in rejecting the random-walk
hypothesis in both Chinese stock markets.  Moreover, our results provide strong support for the
ANN as a potentially useful device for predicting stock prices in emerging markets.

*We wish to thank two anonymous referees for many helpful comments and suggestions.  The
usual disclaimer applies.



1By the end of 1997, the number of listed companies in both markets grew from less than 20 to more
than 800, the number of traders exceeded 32 million, and the market capitalization surpassed 1,770 billion
renminbi (roughly $220 billion) or about one fourth of China’s total GNP.

2Of the 800 firms listed in 1997, more than three fourths were registered with the A shares market, and
the A shares represent more than 97% of total market capitalization.
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I.  Introduction

By any standard, the Chinese economy has achieved a remarkable and, thus far, sustainable

growth since the 1980s.  To further enhance economic efficiency, China became the first Communist

country in the early 1990s to establish a stock market and build a “Socialist Wall Street” to promote

market economy. 

China established two official stock exchanges: the Shanghai Exchange in December 1990,

and the Shenzhen Exchange in July 1991.  Both markets have enormously grown in terms of the

number of companies listed, number of traders, and market capitalization.1  The Chinese markets

trade two main classes of stocks.  Class A shares (denominated in local currency) are only available

to Chinese nationals, and Class B shares (traded in U.S. or Hong Kong dollars) are only available to

foreign investors.  The A shares market is much larger than the B shares market in terms of the

number of listed firms and market capitalization.2  The two markets are effectively segmented markets

and can be studied separately [Bailey (1994)].

The main purpose of this paper is to investigate, using new daily data from the inception of

the markets, whether stock prices of the Shanghai and Shenzhen Exchanges follow a random-walk

process and can thus be considered efficient.  We use two different approaches; namely, the common

variance-ratio test of Lo and MacKinlay (1988) and a model-comparison test that contrasts ex post

forecasts from a random-walk (NAÏVE) model with those obtained from several alternative models.
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3The data are culled from various issues of Chinese Securities Press (in Chinese language), and
gratefully supplied by Sima Tan and Bin Huang of the Guangzhou Securities Company.

Unlike the variance-ratio test, results from the model-comparison test are quite decisive in rejecting

the random-walk hypothesis in both Chinese stock markets.  Moreover, the results provide strong

support for the Artificial Neural Network as a potentially useful device for predicting stock prices in

emerging markets.

II.  Data

The paper only focuses on Class A shares in the Shanghai (SHG) and Shenzhen (SHZ)

Exchanges.  We do not consider Class B shares since, as we mentioned earlier,  the B shares market

is relatively very small compared to the A shares market in terms of market capitalization and level

of activity.  Established research has shown that low-volume, thinly-traded markets are inappropriate

for testing efficiency since they lack liquidity and do not provide smooth transfer of information.

Moreover, price indices in small markets tend to exhibit inflated variances thereby complicating

statistical inferences [Darrat (1990)].

We utilize new daily data of the A shares closing index prices of the Shanghai Exchange

(SHG) from its inception on December 20, 1990 through October 19, 1998; and of the Shenzhen

(SHZ) Exchange from its inception on April 4, 1991 through October 19, 1998.3  Following Lo and

MacKinlay (1988), we construct the corresponding weekly data from the daily figures in order to

avoid well-known problems inherent in daily sampling (e.g., biases due to bid-ask spreads, non-

trading, etc.).  The weekly price series are based on the closing value for Wednesday of each week.

If the Wednesday observation is missing, then the Tuesday’s closing price (or Thursday’s if Tuesday’s
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4Only six weeks are missing for the Shanghai market and only ten weeks are missing for the Shenzhen
market.

5Distributional statistics of the weekly data on stock returns reveal that SHG exhibits a larger mean
and standard deviation than those for SHZ (0.58% versus 0.37% for the means; and 8.05% versus 7.169% for
the standard deviation).  Further indication of higher volatility in the SHG market also comes from the
coefficient of Kurtosis being almost double that of the SHZ market (15.81 versus 8.03).  The skewness
parameters are significantly positive (1.83 and 0.99 respectively for SHG and SHZ), implying fat-tailed
distributions.

is also missing) is used instead.  When Tuesday’s, Thursday’s and Wednesday's prices are all missing,

the return for that week is omitted.  The weekly return is calculated as the logarithmic difference

between two consecutive weekly prices, yielding continuously compounded returns.  Excluding the

missing weeks in both markets,4 our sample yields 402 weekly observations for the Shanghai stock

index, and 383 weekly observations for the Shenzhen stock index.5  We follow Campbell et al.

(1997) and express stock prices in natural logs in order to stabilize the variance of the series over time

and incorporate their exponential growth behavior.

III.  Variance-Ratio Test Results

To test the efficiency of the two Chinese stock markets, we first apply the standard variance-

ratio test of Lo and MacKinlay (1988).  If a given time series follows a random-walk process, the

variance of its w-differences of overlapping stock prices is w times the variance of its first difference.

Following Lo and MacKinlay (1988) as well as Campbell et al. (1997), we use overlapping (as

opposed to non-overlapping) w-period returns in estimating the variances in order to obtain “a more

efficient estimator and hence a more powerful test,” Campbell et al. (1997, p. 52).  An estimated

variance ratio less than one implies negative serial correlation, while a variance ratio greater than one

implies positive serial correlation.  We also employ two other related statistics: the asymptotic normal
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6Following Lo and MacKinlay (1988) and Campbell et al. (1997), the variance ratio (VR) is computed
as the ratio between the overlapping variance of its w-differences to the product of w times the variance of the
first-difference, that is VR=[var (Pt+w - Pt)]/[w @ var (Pt+1 - Pt)]. The random-walk hypothesis requires that
VR=1 which can be tested asymptotically using the normal Z-distribution.

Z test statistic (assuming homoscedasticity), and the heteroscedasticity-consistent Zc test statistic.

Lo and MacKinlay (1988) demonstrate that both test statistics asymptotically follow standard normal

distributions and they are thus amenable to conventional statistical inferences.  Extensive Monte Carlo

results reported in Lo and MacKinlay (1989) suggest that, under the heteroscedastic random-walk

null, the Zc test performs better than  either the Box-Pierce test of serial correlation or the Dickey-

Fuller test of unit roots.

Table 1 displays the values we obtained for the variance ratio, as well as for the Z and Zc 

----------------------------------------------

Put Table 1 About Here

----------------------------------------------

statistics using alternative weekly intervals (w=2, 4, 8, 16, and 32).6  Across these intervals, the

variance ratio tests for both SHG and SHZ markets indicate the presence of positive serial correlation

in the weekly returns.  For example, the variance ratio for the SHG (SHZ) market corresponding to

w=2 is 1.10 (1.18).  This implies a 10% (18%) first-order autocorrelation in the weekly returns and

hence approximately 1% (3.2%) of next week’s return variance can be predicted by the current

week’s return.  The evidence from the Z and Zc test generally concurs with the variance-ratio results.

It should, however, be noted that the test results appear unambiguous only for short intervals,

but somewhat clouded for long horizons.  Indeed, as lags lengthen beyond eight weeks, Z and Zc

statistics begin to lose significance. In view of that, and given recent debate over the power of such
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7Some researchers, e.g., Akgiray (1989), have also questioned the typical Gaussian assumption
underlying return distributions. Observe also that autocorrelation in the SHG market becomes less pronounced
and eventually negative (though insignificant) as interval increases.  This may suggest that stock prices in that
market exhibit both short-term momentum and long-term reversal behavior.  Hence, investors in the SHG
market appear to under-react to changes in price fundamentals for shorter periods, but over-react for longer
horizons.  Prices in the SHZ market, on the other hand, exhibit a momentum behavior throughout.

autocorrelation-based tests [see Poterba and Summers (1988) and Cuthbertson (1996)],7 further

evidence seems warranted to substantiate our claim.  To do that, we examine ex post weekly forecasts

from a random-walk model and compare them to forecasts obtained from alternative models.  Results

from the forecasting tests can shed further light on the efficiency of Chinese stock markets and also

aid in judging the relative forecasting ability of several modeling devices.

IV.  Further Tests

If Chinese stock prices follow a random-walk process, then a random-walk (NAÏVE) model

should not be out-predicted by other models.  A NAÏVE model maintains that the best forecast for

next week’s stock price is simply this week’s price.  Attempting to produce adequate forecasts of key

financial variables, finance literature has witnessed an extensive use of two models; namely, the Auto-

Regressive-Integrated-Moving-Average (ARIMA) and the Generalized-Auto-Regressive-Conditional-

Heteroscedasticity (GARCH) models.  Both ARIMA and GARCH models have achieved varying

degrees of success as forecasting devices [see, for example, Domowiwtz and Hakkio (1985),

Bollerslev (1986), Akgiray (1989), Alexander (1995), and Su and Fleisher (1998)].  Given their

prominence in the literature, we employ the NAÏVE, ARIMA, and GARCH models to generate ex

post weekly forecasts of Chinese stock prices.  In addition, we also utilize another, potentially

powerful, forecasting technique known as an Artificial Neural Network (ANN) model.  
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8White (1992), Smith (1993), and Chauvin and Rumelhart (1995) contain lucid discussions of the
ANN approach.

ANN is a non-parametric (non-linear) modeling technique in which the data series themselves

identify the relationships among the variables.  Derived from cognitive sciences, the ANN model

processes information similar to the way human brains do.    As a non-parametric model, ANN has

the following important advantages over the more traditional parametric models.  First, since ANN

does not rely on restrictive parametric assumptions such as normality, stationarity, or sample-path

continuity, it is robust to specification errors plaguing parametric models.  Secondly, ANN is adaptive

and, as such, responds to structural changes in the data-generating processes in ways that parametric

models cannot.  Finally, ANN is sufficiently flexible and can easily encompass a wide range of

securities and fundamental asset price dynamics.  Indeed, ANN has considerable flexibility to uncover

hidden non-linear relationships among several classes of individual forecasts and realizations

[Donaldson and Kamstra (1996)].  Such advantages have recently led to a growing interest in ANN

models, and these models have proven successful in several situations like pricing initial public

offerings [Jain and Nag (1993)], pricing derivatives [Hutchinson et al.(1994)], forecasting futures

trading volume [Kaastra and Boyd (1995)], forecasting international equity prices [Cogger et al.

(1997)], forecasting returns of large U.S. stocks and corporate bonds [Desai and Bharati (1998)], and

also forecasting exchange rates [Hu et al.  (1999)]. The Appendix provides further technical detail

on the ANN methodology.8  

Stock and Watson (1998) and Diebold and Kilian (1999) argue that a necessary prelude to

obtaining reliable forecasts from parametric models like ARIMA and GARCH is a unit-root

pretesting.  We should, nevertheless, caution that the presence of a unit root (non-stationarity) in
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9In this light, the use of unit root tests to examine the random-walk hypothesis appears doubtful.  See
Liu et al. (1997) and Long et al. (1999).

stock prices is only a necessary (but not sufficient) condition for a random-walk process.  As

Campbell et al.  (1997) demonstrate, unit root tests only explore the permanent/temporary nature of

shocks to the series and, as such,  have no bearing on the random-walk hypothesis (or predictability).9

We apply the augmented Dickey-Fuller test (ADF) and the weighted symmetric test  (WS)

to the log-levels and first-differences of the two price series.  While the ADF test is perhaps the most

popular unit root test, the WS test is found more powerful by Pantula et al. (1994) for  detecting unit

roots.  Table 2 reports the results from the unit root tests (with and without a deterministic time 

------------------------------------------

Put Table 2 About Here

------------------------------------------

trend).  The results there consistently indicate that the price series in both markets are non-stationary

in log-levels, but achieve stationarity in first-differences. [That is, each is integrated of order one.]

These unit root results are used to specify the ARIMA model.  We identify the autoregressive

(AR) and the moving average (MA) terms using a number of criteria: the Akaike Information

Criterion, the Schwert Baysian Information Criterion, and the absence of serial correlation in the

errors.  These criteria suggest an ARIMA (1,1,1) model.  Such relatively short ARIMA terms may

be adequate since simple t-tests reveal that price predictability primarily come from the first-order

correlation component (results of these tests are available upon request).  Additionally, Box and

Jenkins (1976) argue that under-parameterized (parsimonious) ARIMA models produce better
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10This specification for the mean equation of the GARCH model is also compatible with that of the
ARIMA model.  At any rate, possible misspecification of the mean equation (e.g., omitting dividends or
earnings) is not overly damaging in forecasting exercises since the conditional variance estimates are robust
to incorrect specifications of the conditional mean [Nelson (1991)].

11Evidence reported in Akgiray (1989) for the U.S., and in Su and Fleisher (1998) for China also
support the use of a GARCH (1,1) formulation to represent stock prices.  Note further that our forecasting
results from GARCH and ARIMA are strictly comparable since both models use similar (order one) auto-
regressive and moving-average processes.

12We use different numbers of hidden nodes and autoregressive lags of the prices series, and the results
are qualitatively similar to those reported in the text.

13To ensure stationary data, we use the logarithmic first-difference of prices in the ARIMA and
GARCH models and then convert the obtained forecasts back to log-levels of prices which are then used in the
comparison exercises.  In the case of ANN, however, we start with prices in their log-levels since the model,
being non-parametric, does not require stationary data.

forecasts than over-parameterized variants.  For the GARCH model, we specify the mean equation

as an AR(2) process of  price changes to satisfy the stationarity requirement and also to produce

white-noise  residuals.10  The variance equation follows a GARCH (1,1) process with one

autoregressive term for the conditional variance, and another moving-average term for the squared

residuals.11 

In generating the ex post forecast values from the ANN procedure, we design a three-layer

backpropagation neural network.  We use autoregressive weekly lags of stock prices as the input

variables to forecast stock prices.  To be compatible with the lag structures of ARIMA and GARCH

models, the ANN input variables are specified as an AR(2) process.  That is, we use two lags of the

price series as inputs in the ANN.12

These four alternative procedures (NAÏVE, ARIMA, GARCH and ANN) are used  to

generate ex post dynamic one-week-ahead forecasts of the Chinese stock prices (both SHG and

SHZ)13.  Starting with the base sample of December 20, 1990 - July 15, 1998 for SHG; and of April

4, 1991 - July 15, 1998 for SHZ, we employ each of the models to forecast stock prices successively,
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14 As Green (2000, p. 310) explains, these evaluation statistics are defined as follows:
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15We owe this and many other important insights to an anonymous referee.

one-week-ahead, for the 12 remaining weeks in both price series.  The forecast values thus obtained

are considered dynamic (conservative) since the base sample is enlarged successively by the forecast

values generated from the preceding round rather than by actual price values.

We compare the ex post one-week-ahead forecasts of stock prices using three different

evaluation statistics to ensure that our inferences regarding the relative efficiency of the forecasting

models are not driven by the particular criterion used in these comparisons.  The statistics are the

root-mean-squared-error (RMSE),  the mean-absolute-error (MAE), and Theil’s Inequality

Coefficient (U).14  Besides these three individual ex post forecast statistics, we follow Curry et al.

(1995) and also calculate sum statistics (of the entire forecast horizon) in order to evaluate the overall

forecasting performance of the alternative models.

Although useful, these forecasting evaluation criteria cannot determine whether a given

forecasting model is in fact “significantly” better than others.15  Judging the statistical significance of
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rival forecasting models may require the use of encompassing tests [for details, see Donaldson and

Kamstra (1996, 1997)].

The rationale behind these tests is that a model claiming to congruently represent the data-

generating process must be able to account for the salient features of rival models.  In more specific

terms, a given model (k) can be considered superior to another model (j) if model k's forecasts

significantly explain model j's forecasting errors, and further that model k incorporates relevant

information neglected by model j.  The encompassing test is implemented by testing the significance

of the $ and ( coefficients (using t-ratios) in the following two regression equations:

,                                                                 (1)(Pjt
$ )− = +P P andt jk kt tβ ε

                                                                             (2)(Pkt
$ ) $− = +P Pt kj jt tγ η

where and are the forecasting errors from model j and k, respectively; and ( )$P Pjt t− ( )$P Pkt t− $Pjt
$Pkt

are the forecasts of the two models; and g and 0 are random errors.  The null hypothesis is that

neither model encompasses (outperforms) the other. If $ is significantly different from zero but ( is

not, then we reject the null hypothesis in favor of the alternative hypothesis that model k encompasses

model j.  Conversely, if ( is significant but $ is not, this is evidence that model j encompasses model

k.  If both $ and ( are not significant, or that both $ and ( are significant, then we fail to reject the

null hypothesis and conclude instead that neither model encompasses the other.  If one of the models

encompasses the NAÏVE model for predicting stock prices, it can be concluded that Chinese stock

prices do not follow the random walk process.
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16The only exception is for Shenzhen prices and then only at the early weeks of the forecasting horizon
(up to 3 weeks).  However, as the forecasting horizon lengthens beyond three weeks, the ANN begins to
dominate all other forecasting procedures for predicting Shenzen stock prices. Observe also that the relative
performance of the four forecasting procedures significantly diverge over weeks 4-6 of the holdout sample.
We search for possible clues (events) that may explain this divergent behavior of the models but find none.
Nevertheless, the relative superiority of the ANN over other models remains robust to using different holdout
samples.  These alternative results are available upon request.

V.  Assessing the Forecasting Ability of Different Models

We employ the four alternative forecasting models to generate ex post one-week-ahead

forecasts of stock prices in both SHG and SHZ markets.  The holdout period contains 12 weeks in

both markets.  We use RMSE, MAE and Theil's U statistics to evaluate and compare these out-of-

sample forecasts.  Table 3 reports the results for the Shanghai stock prices, and  Table 4 does the

same for the Shenzhen market.  These results provide credence to our preliminary inefficiency

----------------------------------------------------

Put Tables 3 and 4 About Here

----------------------------------------------------

finding derived earlier from the variance-ratio tests.  As we can see from the tables, the NAÏVE model

fares poorly relative to other models.  Moreover, these results  unambiguously support the ANN

model as the dominant forecasting device in both Chinese stock markets.  Looking at the sum values

of the various statistics at the bottom of the two tables, the ANN consistently generates the best

overall out-of-sample forecasts in both the SHG and the SHZ markets and according to all three

evaluation criteria used (smallest sums of RMSE, MAE, and Theil’s U).  Even on a weekly basis, the

ANN generally outperforms the NAÏVE, ARIMA, and GARCH models with much smaller

forecasting errors throughout the forecasting horizons.16 

The two central findings then are that the random-walk model does not receive support from

the forecasting results, and that the ANN dominates other models in forecasting Chinese stock prices
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17Studies that use ARIMA models to test market efficiency abound.  Examples include Gau (1984),
Mok (1993), and Hayri and Yilmaz (1997).

in both Shanghai and Shenzhen markets.  The evidence is underscored by the considerable percent

improvement in the sum of RMSE from the ANN over the NAÏVE model, amounting to 57%

improvement for the Shanghai market and 43% for the Shenzhen market.  Such significant gains in

forecasting Chinese stock prices attest to the departure of the Chinese markets from the random walk

hypothesis and also further support the superiority of the ANN as a powerful forecasting device. 

Results from the encompassing tests reported in Table 5 paint a similar picture.  As is clear

from the table (panel A for the SHG market and panel B for the SHZ market), forecasts from the 

-------------------------------------------------------

Put Table 5 About Here

--------------------------------------------------------

ANN method significantly explain forecasting errors from each of the three alternative methods,

(NAÏVE, ARIMA, and GARCH) in both markets.  At the same time, the forecasting errors of the

ANN model are not accounted for by any of the rival models.  Hence, the ANN model significantly

encompasses (outpredicts) other models and, as such, can be considered a dominant forecasting

device.  These results corroborate our earlier findings and provide another piece of evidence against

the random-walk hypothesis in the context of the Chinese stock markets.

Two more implications present themselves.  First, the ARIMA model tends to provide inferior

forecasts than those from a NAÏVE model in both Chinese markets.  Thus, the sole use of ARIMA

model in testing market predictability would have, at least in our case, led to the incorrect inference

that the Chinese markets follow a random walk.17  Second, the relative success of the ANN model

in forecasting Chinese stock prices suggest that these prices may be better captured by non-linear
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processes.   Such an inference supports Hutchinson et al (1994) and Donaldson and Kamstra (1997)

in their contention that non-linearities in financial data may be better approximated by the ANN

structure and logistic transformation.

Moreover, the ANN process, being perceptual, can better account for cognitive errors

generated by semi-rational investors.  As Daniel et al. (1998) argue, modeling decision-making of

semi-rational investors imposes numerous restrictions on trade distributions which are difficult to

identify by traditional parametric time series models.  The significant superior performance of the

distribution-free ANN compared to the random-walk model and other conventional time-series

models suggest that “hidden” relationships generated by potentially “irrational” investors are well

accommodated for by the ANN algorithm.

VI.  Some Possible Explanations for the
Non-Random Walk Behavior in Chinese Markets

Our empirical results from variance-ratio and model-comparison tests consistently suggest that

Chinese stock prices do not follow a random-walk process.  Of course, finding evidence against the

random-walk hypothesis is not unique with our study, and many other researchers reach similar

conclusions [see, for example, Lo and MacKinlay (1988) for the U.S. equity market; Urrutia (1995)

for several Latin American markets; Basci et al.  (1996) and Antoniou et al.  (1997) for Turkey; and

Santis and Imrohorglu (1997) for many Latin American and Asian countries].  We also note that

rejecting the random-walk hypothesis does not necessarily negate market efficiency.  As Summers

(1986) argues, contradicting the random-walk hypothesis in a given market may only mean that the

obtained results are inconsistent with the particular martingale process of a random walk. In addition,

some explanations for the rejection of the random-walk hypothesis in the Chinese context are not
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18Note that this non-synchronous trading should be distinguished from the missing data problem we
alluded to earlier.  The former causes low trading volume, while the latter only means that there is no data for
particular days, although trading may be active.

difficult to find.  For example, Fama and French (1988) and Porterba and Summers (1988) suggest

that stock prices may be described as the sum of both a random-walk component and a stationary

(mean-reverting) component.  Consequently, stock returns would tend to overreact to fundamental

shocks and, as such, would exhibit  negative autocorrelation (less-than-unity variance ratio).

However, our results reported in Table 1 suggest exactly the opposite for both Chinese stock markets

since stock returns display positive autocorrelation (larger-than-unity variance ratio). Therefore,

Chinese stock prices do not seem to conform to the hypothesized mean-reverting behavior. 

Non-synchronous stock trading could also provide another justification.  Any new information

that arrives after the last transaction of the day will only be reflected in the next day’s or perhaps next

week’s closing price data.  This “infrequent trading” could create some predictability in market

returns since new information is not instantly embedded in traded stocks, thus allowing for exploitable

lags.18  However, with weekly returns data, the extent of infrequent trading necessary to produce a

weekly autocorrelation of 18% (for SHZ) seems empirically unreasonable.  According to Lo and

MacKinlay's (1988) test of non-trading probability, such a high degree of weekly autocorrelation

requires at least 50% of all Chinese stocks to be inactive.  Therefore, while non-synchronous trading

may be responsible for some of the observed autocorrelation, it appears insufficient to justify it all.

Another explanation for our inefficiency finding may lie in market imperfections that are

common in emerging markets due to their ineffective legal  structures and lack of transparency that

prevent the smooth transfer of information.  Interestingly, using Urrutia's (1995) posture, the

presence of persistent autocorrelation in the Chinese stock markets may be the outcome of a growing

economy rather than  market inefficiency per se.  Uncertainty in Chinese business and political
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19Other relevant behavioral-finance stories include the psychological model of representativeness
heuristic and conservatism of Barberis et al. (1998), the prospect theory of Barberis et al. (1999), and the
theory of information traps and misaligned beliefs proposed by Noth et al. (2000)].

environment could also contribute to the inefficiency results [Su and Fleischer (1998)].  As Campbell

et al.  (1997) argue, a certain degree of market predictability may be necessary to reward investors

for bearing certain dynamic risks associated with business and political instability.  

Finally, recent research in behavioral finance also suggests other possible reasons for the

apparent predictability of stock prices.  For example, the behavioral model proposed by Daniel et al.

(1998) reconciles short-term momentum with long-term reversal behavioral of stock prices.  Daniel

et al. argue that investors tend to be quite confident of the precision of private information and thus

overreact to private information signals.  Hence, price movements in reaction to the arrival of private

information are on average partially reversed in the long-run.  Furthermore, investors' confidence rises

when public information is in agreement with private information, though does not seem to fall

commensurately when contradiction occurs.  This “biased self-attribution” behavior could explain the

presence of positive short-lag autocorrelation (momentum) in stock prices [see   Odean (1999) and

Gervais and Odean (2000) and for further discussion of these overconfidence effects].  In emerging

markets, such as the Chinese market where securities are less liquid and  information is asymmetric,

the effects of overconfidence and biased self-attribution can be especially pronounced.19  In this light,

our finding of inefficiency in the Chinese stock market does not appear too surprising.

VII.  Conclusions
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Results from variance ratio tests applied on new daily stock price data of China’s two official

stock exchanges (Shanghai and Shenzhen) appear at odds with the random-walk hypothesis.

Irrespective of a constant or a changing variance, Chinese stock prices display a pronounced tendency

for positive autocorrelation, raising the potential for predictability.

Besides the standard variance-ratio test, we argue that another interesting approach for testing

the random-walk hypothesis is to compare the ex post forecasts from the NAÏVE model with those

generated from rival models.  The random-walk hypothesis would be negated if the NAÏVE model

fails to outpredict alternative models.  We follow this model-comparison approach and generate ex

post (one-week-ahead) forecasts of Chinese stock prices from four different forecasting models;

namely, NAÏVE, ARIMA, GARCH, and also ANN (artificial neural network).  We compare the ex

post forecasting ability of these models on the basis of alternative evaluation criteria (RMSE, MAE,

and Theil's U).  In addition, we perform encompassing tests that are particularly useful for assessing

statistical superiority among rival forecasting models.  The  results  unambiguously reject the random-

walk hypothesis in both Chinese stock markets.  We also find consistent evidence supportive of the

ANN approach over other models as a useful device for forecasting Chinese stock prices.

Our inference against the random-walk hypothesis should not be totally surprising especially

in the case of an emerging market, and many studies have also reported similar results.  We have

examined several plausible reasons as to why Chinese stock prices may be predictable and highlight

the semi-rational behavior of Chinese investors as a likely candidate. We should finally caution that

improved forecast performance with the ANN algorithm does not necessarily imply profitable trading

rules unless such rules can also provide risk-adjusted excess returns after controlling for transaction

costs. 
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Appendix
Artificial Neural Network

An artificial neural network consists of one input layer, one output layer, and a number of

hidden layers in between.  Typically, one hidden layer is sufficient to produce acceptable results

[Hornik, et al.  (1992)].  As Figure 1 shows, each of the layers comprises a number of processing 

------------------------------------------

Put Figure 1 About Here

------------------------------------------

units known as neurons (or nodes).  Each neuron in the input layer stores information provided by

the user (e.g., past stock prices).  The hidden layer also contains neurons, but information stored in

these neurons continuously change as the network trains.  The output layer consists of a single neuron

since, in our case, we are forecasting only one variable – Chinese stock prices.

The neurons in all three layers are interconnected such that the input layer is only connected

forward to the hidden layer, and the output layer is only connected backward to the hidden layer.  All

connections are assigned certain weights to characterize the strength of the connection.  In addition

to the processing units, there is a bias dummy neuron connected to hidden and output layers that

allows for a more rapid convergence of the training process.

In our application of ANN, we use a particularly popular algorithm called the

“backpropagation” to forecast Chinese stock prices.  The backpropagation algorithm proceeds as

follows.  First, inputs (past stock prices) are passed forward to the hidden layer and multiplied by

their respective weights to compute a weighted sum.  Next, the weighted sum is modified by a

transfer function (usually a logistic -- or sigmoid -- function) and then sent to the output layer.  Third,

the output layer neuron re-calculates the weighted sum and applies the transfer function to produce

the output value of this forward pass.  Finally, an error signal, which is computed as the difference
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between the output value of the forward pass and the target value, is “backpropagated” to the hidden

layer and then to the input layer.  Every weight that connects the hidden and output layers is adjusted

proportionally to each neuron’s contribution to the forecast error with the objective to minimize the

mean squared-error.

The above training process continues interactively until an acceptable (minimum) mean

squared-error target chosen by the user is achieved.  When setting the target for the mean squared-

error, the user should compare the forecast accuracy with the necessary time for convergence.  Below

is a brief account of the backpropagation algorithm of ANN training process.

Taking a one-hidden layer network as an example, the backpropagation algorithm of ANN

works as follows.  Available information (in our case, past stock prices) is stored in the input layer

as a signal im, where m = 1, 2, ..., k, where k is the number of neurons in the input layer (i.e., k is the

number of lags in stock prices). The first neuron in the hidden layer forms a sum of the connection

weights times the input signals over the connections with all neurons including the bias neuron in the

input layer, that is 

(n = 1, 2, ... j) (A1)SUM w i whn i h m
m

k

bias hm n n
= +−

=
−∑ ( )

1

where, SUMhn is the weighted sum formed in the nth neuron in the hidden layer; 

wim-hn is the weight assigned to the connection between the mth neuron in the input layer

and the nth neuron in the hidden layer, 

im is the signal from the mth neuron in the input layer, and

wbias-hn  represents the contributory effect of the bias neuron to the nth neuron in the

hidden layer.
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The sum is then transformed to a value (OUThn) between 0 and 1, using the following logistic

(sigmoid) function:

(n = 1, 2, ... j) (A2)OUT SUMh hn n
= + −1 1/( exp( ))

The output values from the hidden layer (OUThn) again become the input values for the output layer,

and the following weighted sum is calculated:

 (A3)SUM w OUT wO h O h
n

j

bias On n
= +−

=
−∑ ( )

1

The output value of the entire epoch (OUTo) is calculated as:

(A4)OUT SUMO O= + −1 1/( exp( ))

Next, the mean-squared error between the actual series and the output series obtained from

this epoch is computed.  If it exceeds the specified minimum error objective, the ANN adjusts the

connection weights for this training epoch accordingly. The ANN then begins another epoch until the

mean-squared error reaches the specified  minimum error objective.

After each epoch, the connection weights are adjusted as follows.  Starting with the weights

that connect the output and hidden layers, the weight adjustments are propagated backward using the

formula:

(A5)δO O O OOUT OUT TARGET OUT= − −( )( )1

where *O is the delta value (error signal) of the neuron in the output layer, and TARGET is the target

output value based on the pre-specified mean-squared error.  Based on (A5), the change of the weight

connecting the nth hidden neuron to the output layer is also calculated:

(n = 1, 2, ... j) (A6)∆ ∆w q OUT w qh O O h h On n n− −= + −( ) [ ( )]ηδ α 1
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where, )whn-O(q) is the change in weight for the connection between the nth hidden neuron and

the output layer neuron in the qth epoch,

0 is the user-specified learning rate that controls changes in the weights,

*O is the delta value for the neuron in the output layer, and

" is the user-specified momentum rate to the adaptive training process, that helps prevent

temporary changes in direction from adversely affecting the learning process (i.e.,

mitigating wild fluctuations in different directions).

The new weight assigned to this connection is computed as:

(n = 1, 2, ... j) (A7)w q w q w qh O h O h On n n− − −= − +( ) ( ) ( )1 ∆

To adjust the weights in the hidden layer, another formula is used to calculate the delta value

(*hn) since no targets are established for this layer.  The formula is:

(n = 1, 2, ... j) (A8)δ δh h h O h O
n

j

n n n n
OUT OUT w= − −

=
∑( )( )1

1

The weight connecting the input layer to the hidden layer is adjusted using an

equation similar to (A6).  That is:

(n = 1, 2, ... j, m=1, 2, ...k) (A9)∆ ∆w q i w qi h h m i hm n n m n− −= + −( ) [ ( )]ηδ α 1

This procedure continues until a specified minimum mean-squared error is reached.
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Table 1.  Variance Ratio Test Results for China’s Weekly Stock Returns

A.  Shanghai Stock Market (SHGE)

w=2 w=4 w=8 w=16 w=32

Variance Ratios 1.10  1.20    1.30    1.25 0.87

Z statistics 1.92* 2.11** 2.05** 1.13 -0.41

Zc statistics 1.11  1.79*  2.18** 1.34 -0.47

B.  Shenzhen Stock Market (SHZ)

w=2 w=4 w=8 w=16 w=32

Variance Ratios 1.18   1.29   1.49   1.52   1.41

Z statistics 3.36** 2.94** 3.18** 2.28** 1.24

Zc statistics 2.70** 3.28** 3.78** 2.82** 1.77

Notes: w is the number of weekly intervals aggregated to compute the variance ratios; Z statistics
are the asymptotic normal test statistics under homoscedasticity; Zc statistics are the
asymptotic normal test statistics under heteroscedasticity.
An * indicates rejection of the null hypothesis of no autocorrelation at the 10% significance
level,  while ** indicates rejection at the 5% level. 



Table 2.  Unit Root Test Results for China’s Weekly
 Stock Prices (P) and Stock Returns ())P)

A.  Shanghai Stock Market (SHG)

Augmented Dickey-Fuller Test Weighted Symmetric Test

With Trend Without Trend With Trend Without Trend

Pt -2.58    -2.46    -2.00    -0.65    

)Pt -6.83** -6.77** -6.93** -6.86**

B.  Shenzhen Stock Market (SHZ)

Augmented Dickey-Fuller Test Weighted Symmetric Test

With Trend Without Trend With Trend Without Trend

Pt -1.79    -1.50    -2.06    -1.34    

)Pt -9.83** - 9.84** -9.89** -9.89**

Notes: See notes to Table 1.  Pt=log of the stock price index; )Pt = first differences of Pt .  The
numbers of lags in the testing equations are selected by Akaike Information Criterion
(provided the residuals are also white-noise).



Table 3. Out-of-Sample, One-Week-Ahead, Forecasting Performance of Alternative Models
(The variable being forecast is the logs of stock prices)

The Shanghai Stock Market (SHG)

NAÏVE ARIMA GARCH ANN

Week-Ahead RMSE MAE Theil’s U RMSE MAE Theil’s U RMSE MAE Theil’s U RMSE MAE Theil’s U

1 0.0286 0.0286 0.0040 0.0302 0.0302 0.0042 0.0536 0.0536 0.0075 0.0045 0.0045 0.0006

2 0.0238 0.0232 0.0033 0.0268 0.0266 0.0037 0.0396 0.0349 0.0055 0.0194 0.0158 0.0027

3 0.0229 0.0225 0.0032 0.0284 0.0282 0.0040 0.0370 0.0337 0.0052 0.0284 0.0241 0.0040

4 0.0608 0.0456 0.0085 0.0698 0.0538 0.0098 0.0689 0.0557 0.0096 0.0312 0.0277 0.0044

5 0.0936 0.0706 0.0131 0.1061 0.0814 0.0149 0.0722 0.0614 0.0101 0.0160 0.0385 0.0065

6 0.1030 0.0822 0.0145 0.1187 0.0959 0.0167 0.0659 0.0514 0.0093 0.0452 0.0389 0.0064

7 0.1131 0.0935 0.0159 0.1323 0.1100 0.0186 0.0638 0.0511 0.0090 0.0463 0.0408 0.0065

8 0.1133 0.0961 0.0160 0.1352 0.1155 0.0190 0.0600 0.0468 0.0084 0.0433 0.0360 0.0061

9 0.1089 0.0926 0.0153 0.1327 0.1149 0.0187 0.0570 0.0440 0.0080 0.0454 0.0386 0.0064

10 0.1066 0.0916 0.0150 0.1329 0.1169 0.0187 0.0561 0.0443 0.0079 0.0456 0.0395 0.0064

11 0.1039 0.0898 0.0146 0.1326 0.1181 0.0187 0.0537 0.0417 0.0076 0.0476 0.0417 0.0067

12 0.1032 0.0903 0.0145 0.1351 0.1216 0.0190 0.0534 0.0424 0.0075 0.0474 0.0420 0.0067

GG(12) 0.9818 0.8267 0.1380 1.1808 1.0131 0.1659 0.6812 0.5610 0.0956 0.4203 0.3881 0.0634

Notes: NAÏVE is the random-walk model, ARIMA is the autoregressive integrated moving average model; GARCH is the generalized autoregressive conditional heteroscedasticity model, and
the ANN is the artificial neural network.  The out-of-sample, one-week-ahead, forecasts are generated dynamically whereby the sample-base period of December 20, 1990-July 15, 1998
is successively expanded by the forecast values from the previous round until the forecast of the 12th week is generated.



Table 4. Out-of-Sample, One-Week-Ahead, Forecasting Performance of Alternative 
Models (the variable being forecast is the logs of stock prices)

The Shenzhen Stock Market (SHZ)

NAÏVE ARIMA GARCH ANN

Week-Ahead RMSE MAE Theil’s U RMSE MAE Theil’s U RMSE MAE Theil’s U RMSE MAE Theil’s U

1 0.0116 0.0116 0.0014 0.0074 0.0074 0.0009 0.0668 0.0668 0.0081 0.0213 0.0213 0.0026

2 0.0085 0.0073 0.0010 0.0054 0.0045 0.0007 0.0882 0.0861 0.0107 0.0400 0.0368 0.0049

3 0.0102 0.0091 0.0012 0.0112 0.0090 0.0014 0.0845 0.0829 0.0103 0.0442 0.0417 0.0054

4 0.0508 0.0319 0.0062 0.0555 0.0340 0.0068 0.0732 0.0636 0.0089 0.0403 0.0377 0.0049

5 0.0814 0.0557 0.0099 0.0886 0.0601 0.0108 0.0682 0.0594 0.0083 0.0473 0.0438 0.0058

6 0.0897 0.0669 0.0109 0.0990 0.0734 0.0121 0.0800 0.0700 0.0098 0.0454 0.0423 0.0057

7 0.1027 0.0802 0.0126 0.1144 0.0888 0.0140 0.0741 0.0602 0.0091 0.0491 0.0458 0.0060

8 0.1064 0.0864 0.0131 0.1202 0.0970 0.0148 0.0720 0.0596 0.0088 0.0474 0.0442 0.0058

9 0.1053 0.0874 0.0129 0.1207 0.1001 0.0148 0.0779 0.0657 0.0096 0.0447 0.0397 0.0055

10 0.1068 0.0906 0.0131 0.1243 0.1054 0.0153 0.0773 0.0663 0.0095 0.0428 0.0375 0.0053

11 0.1092 0.0943 0.0134 0.1289 0.1111 0.0158 0.0783 0.0683 0.0096 0.0416 0.0367 0.0051

12 0.1145 0.0999 0.0141 0.1365 0.1187 0.0168 0.0758 0.0659 0.0093 0.0431 0.0383 0.0053

GG(12) 0.8972 0.7214 0.1101 1.0121 0.8095 0.1242 0.9163 0.8148 0.1120 0.5072 0.4658 0.0623

     Notes: See notes to Table 3.  The out-of-sample, one-week-ahead, forecasts are generated dynamically whereby the sample-base period of April 4, 1991 - July 15, 1998 is successively expanded
by the forecast values from the precious round-until the forecast of the 12th week is generated.



Figure 1.  Three-Layer Artificial Neural Network



Table 5.  Encompassing Tests of Out-of-Sample Forecasting Performance of Alternative
Models

Panel A: The Shanghai Stock Market (SHG)

Dependent Variable:
Forecasting Errors from

                  Independent Variable: Forecasts from             

NAÏVE ARIMA GARCH ANN

NAÏVE -- 6.00** 5.90** 5.93**

ARIMA 6.84** -- 6.72** 6.76**

GARCH 3.00** 3.00** -- 3.01**

ANN     0.41   0.40    0.40    --

Panel B: The Shenzhen Stock Market (SHZ)

Dependent Variable:
Forecasting Errors from

                  Independent Variable: Forecasts from             

NAÏVE ARIMA GARCH ANN

NAÏVE -- 5.83** 5.71** 5.76**

ARIMA 5.78** -- 5.67** 5.73**

GARCH 5.74** 5.74** -- 5.74**

ANN     0.64   0.65    0.62    --

Notes: Variables being forecast are the logs of stock prices. The test statistics are heteroscedastic-
consistent t-ratios.  An ** indicates statistical significance at the 5% level.  See notes to
Tables 3 & 4 for further forecasting details. 


